• PhD on synthesis, mechanical properties and biodegradability of thin films metallic glasses, Paris, France

    PhD Topic:

    Synthesis, mechanical properties and biodegradability of thin films metallic glasses

    Short description:

    The study of amorphous metal films (thin film metallic glasses, TFMGs) is receiving more and more attention due to the excellent mechanical properties: a tensile strength close to theoretical limit, high hardness and elastic deformation. Their disordered atomic structure is the source of unique physical properties that are different from their crystalline counterparts. However, studies on the synthesis and characterization of TFMGs are relatively recent, as efforts have focused on the bulk metallic glasses (BMGs). In this context, the main goal of the study is the TFMGs synthesis by magnetron sputtering on flexible polymer substrates with a structure totally or partially disordered at the nanometric scale. Structural-mechanical relationship will be identify trough the combination of x-ray diffraction, scanning electron microscope, nanoindentation, optoacoustic techniques and micro-tensile tests of films on flexible polymeric substrates. We aim to establish correlation between the elastic and plastic properties of TFMGs, and contribute to a better understanding of the microstructures and local atomic ordering influence on their mechanical properties. In addition, one application of these coatings in the biomedical field is considered, in partnership with the Laboratory for Translational Vascular Research (LVTS, INSERM U1148, Pr. F. Chaubet) who will perform specific biocompatibility tests (cells growth,…).

    PhD tasks :

    (i) coatings with thin films of metallic glasses on flat polymeric supports (Kapton or elastomer sheets) and curved structures of polymers obtained by 3D printing; 

    (ii) study of the structural and mechanical properties of hybrid materials, in particular at the polymermetal interface, 

    (iii) control of their degradation kinetics in simulated biological medium,

    (iv) in the context of a biomedical application, the evaluation of their mechanical properties in relation to the absorption of the materials constituting the hybrid,

    (v) evaluation of compatibility with human vascular cells (collaboration with the LVTS , Pr. F. Chaubet).

    Further information and application:

    Supervision: Prof. Philippe Djemia (LSPM, Université Sorbonne Paris Nord),

    Co-supervision: Dr. Fatiha Challali, Dr. Florent Tétard

    Financial support: MESR Grant (starting on September 1th 2020; 3 years duration).

    Start date: September 1st 2020

    More detail on the subject and information on application are available in the following document: « PhD offer-Thin film Metallic glass-LSPM-2020.pdf »


  • Comments

    No comments yet

    Suivre le flux RSS des commentaires


    Add comment

    Name / User name:

    E-mail (optional):

    Website (optional):

    Comment: