• Descritption du poste :

    - Enseignement:

    La personne recrutée effectuera son enseignement dans les différentes formations de l’institut Galilée, aussi bien en Licence et Master qu’en formation d’ingénieurs. Elle sera intégrée au sein du département de physique, qui regroupe les enseignements de physique générale et appliquée (électronique, traitement du signal, réseaux). Elle devra s’investir particulièrement dans les enseignements généraux de physique, notamment dans le parcours aménagé de Licence 1ère année destiné aux étudiants ayant obtenu une réponse "Oui Si" via ParcourSup. Des compétences en physique appliquée, par exemple en électronique analogique et/ou numérique ainsi qu’en instrumentation, seront également appréciées. A la rentrée 2019, elle sera appelée à assurer la supervision et la coordination des enseignements de physique du 1er semestre de licence.

    Lieux : Département de Physique à l'Institut Galilée.

    Contact: Luc Museur , luc.museur@univ-paris13.fr.

    -Recherche:

    Le Professeur des Universités recruté développera ses activités de recherche au sein du LSPM sur le site de l’Institut Galilée de l’université Paris 13. Il viendra soutenir les activités de recherche portant sur la caractérisation de films minces et matériaux nanostructurés. Le candidat devra mener des recherches expérimentales originales sur les problématiques liées aux propriétés mécaniques ou/et magnétiques de films minces et nanostructures et le cas échéant de leur couplage. Le projet devra comporter des développements instrumentaux permettant de sonder les propriétés statiques et/ou dynamiques de ces systèmes fonctionnels.

    Laboratoire d’accueil: Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS).

    Contact: Dominique Vrel, dominique.vrel@lspm.cnrs.fr.

    Plus d'informations dans le document ci-joint: « PR28 Université Paris 13 - LSPM.pdf »


    your comment
  • Subject: "Multi-scale modeling of UO2 plasticity: on the role of irradiation defects"

    Description: The main goal of the PhD is to develop a constitutive model based on dislocation interactions with irradiation loops. This model is needed to compute inelastic strains induced at high temperature and under irradiation. First, dislocation mobility and reactions between defects will be characterized using the atomic scale LAMMPS molecular dynamics (MD) package. Then, atomistically-informed dislocation dynamics (DD) simulations will be performed at the grain scale to quantify strain hardening induced by irradiation defects.

    The Ph.D will be done in the framework of a collaboration between INSA-Lyon (jonathan.amodeo@insa-lyon.fr), the University of Lyon (david.rodney@univ-lyon1.fr) and the CEA at Cadarache (bruno.michel@cea.fr, emeric.BOURASSEAU@cea.fr).

    Application: CV and application letters should be sent to david.rodney@univ-lyon1.fr, jonathan.amodeo@insa-lyon.fr, bruno.michel@cea.fr.

    More information in the following document :

    En - «These_THOT_eng.pdf »

    Fr - «These_THOT_fr.pdf »


    your comment
  • PhD subject: "Characterization and Modeling of Phase-Change Materials for Advanced Embedded Memory Applications."

    Description: This PhD work will investigate in situ the structural change of these materials during heat treatment using various advanced X-ray scattering techniques (laboratory or synchrotron radiation facilities). These advanced experiments and their modeling by finite element-based methods will bring invaluable information on the physical mechanisms at work during crystallization (nucleation and growth of crystalline phases, stress development and relaxation...).

    Aside from X-ray scattering additional input will be obtained from complementary techniques available from the partners (IM2NP/STM/CEA-LETI) involved in the PhD project such as transmission electron microscopy, Raman/FTIR/X-Ray Photoelectron spectroscopy, resistivity/reflectivity/ellipsometry vs temperature...). Thanks to the high penetrating power of x-rays dedicated deviceswill, in the longer term, be developed for operando real time investigations of memory cells during operations like set and reset at synchrotrons or XFELs.

    Candidate profile: The ideal candidate holds a master’s degree in Material Sciences (or equivalent), has a solid background in physics, good communication skills and is proficient in written and spoken English. Knowledge of solid mechanics and programming skills will be appreciated.

    Information:

    Deadline: June 30th, 2019

    Starting year: 2019

    PhD Advisor: Prof. Olivier Thomas

    Laboratory: IM2NP (http://www.im2np.fr/)

    Industry: STMicroelectronics, Crolles/Rousset–France (http://www.st.com)

    Funding: CIFRE (3 years)

    Location: IM2NP-Marseille(60%), STM-Crolles/Rousset(20%) and CEA-LETI-Grenoble(20%)

    Application: Applications including a CV and letter of motivation should be sent by email Prof. Olivier THOMAS (olivier.thomas@im2np.fr) and Philippe Boivin (philippe.boivin@st.com).

    Further information in the following document: « 2019_STMicroelectronics_IM2NP_CEA_PhD_PCM_Charac.pdf »


    your comment
  • Research at the Institute of Metallurgy and Metal Physics (IMM) at RWTH Aachen University focuses on fundamental and applied materials physics. Materials are characterized, modelled and optimized in interdisciplinary collaborations at national and international level and using state of-the-art equipment for experiments and simulations. 

    IMM is looking for PhD and Post doctoral researcher:

    PhD and Post-Doc: "Machine learning in Material Physics"

    The knowledge-driven development of new materials, improvement of processing strategies and component design is increasingly based on detailed descriptions of the underlying damage mechanisms inside the material's microstructure. At the IMM, initial machine learning environments have been developed and tested which show that much larger datasets could be acquired and analysed to improve the ways in which we study and understand material's deformation. In this context, we would like to advance existing microscopy and analysis methods towards the interrogation of larger and therefore much more relevant areas.

    - PhD:

    During this PhD project, you would drive this research further to expand its reach and versatility in close collaboration with the materials scientists at IMM. In particular, the use of A.I.‐assisted damage analysis “in situ” during experiments inside an electron microscope will be developed and implemented to allow fast, high‐resolution observation of large area. Ultimately, the aim is to improve our understanding of damage in dual phase materials, such as advanced high strength  steels,  to  enable  better  and  safer  lightweight  design  in  automotive  and  other structural applications.

    More information in the following document: « MachineLearning_IMM_Doktorand.pdf »

    -Post-Doc:

    As a Post-Doc in this area, you would drive this research further to expand its reach and versatility in close collaboration with the materials scientists at IMM and within the scope of research topics including safety conscious lightweight design and high performance materials.

    More information in the following document: «MachineLearning_IMM.pdf »

    PhD: "C-Tram: Where do the Carbon atoms go in martensite ?"

    Martensitic steels are of high applicational relevance due to their extraordinary strength and the adjustability of their strength, toughness and formability over a wide range by simple technological treatments. Their properties are determined by the local structural processes during the austenite-to-martensite transformation as well as the post-processing of the martensite. In a joint project together with partners at the Max-Planck-Institut für Einsenforschung and in France, the IMM aims to unravel the local processes during the austenite-to-martensite transformation combining high resolution theoretical and experimental investigations for Fe-TMC steels. Within this collaborative project, you would be responsible for advanced characterisation using electron microscopy in close cooperation with partners performing atom probe analysis and theoretical calculations.

    More information in the following document: «Martensite_IMM.pdf »

    PhD: "Deformation of intermetallic Fe-Mo phases."

    The goal of this project is to unravel the atomic scale deformation mechanisms of two closely related crystalline phases, the µ- and λ-(laves) phase in the Fe-Mo system. These stand in as model materials which allows us to gain much better understanding of the higher alloyed variants that frequently occur in superalloys and steels. In order to successfully complete this project you will be introduced to several microscopy techniques including scanning and transmission electron microscopy, the diffraction techniques applied in both microscopes and nanomechanical testing. The latter will be used to introduce dislocations for microscopy and also to measure the relevant stresses required for deformation in a quantitative manner.

    More information in the following document: «TCPPhasen2_IMM.pdf »

    Application:

    For further information or application, please contact Prof.Dr. Sandra Korte-Kerzel (korte-kerzel@im.rwth-aachen.de), Dr. Talal Al-Samman (al-samman@imm.rwth-aachen.de) or Dr. Stefanie Sandlöbes (sandloebes@imm.rwth-aachen.de).

    Applications accompanied by supporting documentation in English (Cover letter, CV, certificates, credentials, names and addresses of 2 references) should be submitted as soon as possible.


    your comment
  • The Department of Materials Science and Engineering (MSE) (http://www.cityu.edu.hk/mse) of the City University of Hong Kong is actively recruiting ~5 computational materials scientists for tenure-track/tenured faculty positions. Additional opportunities exist for computational materials scientists via joint appointments with other departments.

    The MSE Department is now searching for outstanding junior and mid-career computational materials scientists in the following areas (exceptional candidates in other computational materials science areas will also be considered):

    • Density functional theory/first-principles calculations,material genomics, machine learning and interatomic potential development

    • High performance structural materials (e.g., high temperature, high strength, tough, and/or lightweight materials)

    • Mesoscale/microstructure/micromechanics simulations

    • Density functional theory/first-principles transport calculations for electrons, spins, photons, excitons and polarons in complex organic and/or inorganic materials

    • Computational design of functional interfaces and devices, multi-dimensional perovskites, and materials for charge transport

    • Photo/electrocatalysis (e.g., HER,OER, NRR and CO2 reduction)

    Successful candidates will have a Ph.D. or equivalent degree and track-record of outstanding research performance. Evidence of the skill set required to build a dynamic, collaborative research program is a plus.

    Interested applicants should formally apply through the CityU Human Resource Office Online System: http://www.cityu.edu.hk/hro/en/job/current/academic.asp?ref=uac-a237 .

    For full consideration, please apply by February 15, 2019.

    Further information are available in the document below:


    your comment


    Follow this section's article RSS flux
    Follow this section's comments RSS flux